Topological Vector Spaces
نویسنده
چکیده
Theorem 1.4. Let X be a tvs and let F be a local base at 0. Then (i) U, V ∈ F ⇒ there exists W ∈ F such that W ⊆ U ∩ V . (ii) If U ∈ F , there exists V ∈ F such that V + V ⊆ U . (iii) If U ∈ F , there exists V ∈ F such that αV ⊆ U for all α ∈ K such that |α| ≤ 1. (iv) Any U ∈ J is absorbing, i.e. if x ∈ X, there exists δ > 0 such that ax ∈ U for all a such that |a| ≤ δ. Conversely, let X be a linear space and let F be a non-empty family of subsets of X which satisfy (i)–(iv), define a topology J by :
منابع مشابه
On $beta-$topological vector spaces
We introduce and study a new class of spaces, namely $beta-$topological vector spaces via $beta-$open sets. The relationships among these spaces with some existing spaces are investigated. In addition, some important and useful characterizations of $beta-$topological vector spaces are provided.
متن کاملLOCAL BASES WITH STRATIFIED STRUCTURE IN $I$-TOPOLOGICAL VECTOR SPACES
In this paper, the concept of {sl local base with stratifiedstructure} in $I$-topological vector spaces is introduced. Weprove that every $I$-topological vector space has a balanced localbase with stratified structure. Furthermore, a newcharacterization of $I$-topological vector spaces by means of thelocal base with stratified structure is given.
متن کاملs-Topological vector spaces
In this paper, we have dened and studied a generalized form of topological vector spaces called s-topological vector spaces. s-topological vector spaces are dened by using semi-open sets and semi-continuity in the sense of Levine. Along with other results, it is proved that every s-topological vector space is generalized homogeneous space. Every open subspace of an s-topological vector space is...
متن کاملON LOCAL BOUNDEDNESS OF I-TOPOLOGICAL VECTOR SPACES
The notion of generalized locally bounded $I$-topological vectorspaces is introduced. Some of their important properties arestudied. The relationship between this kind of spaces and thelocally bounded $I$-topological vector spaces introduced by Wu andFang [Boundedness and locally bounded fuzzy topological vectorspaces, Fuzzy Math. 5 (4) (1985) 87$-$94] is discussed. Moreover, wealso use the fam...
متن کاملMenger probabilistic normed space is a category topological vector space
In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces...
متن کاملBoundedness of linear order-homomorphisms in $L$-topological vector spaces
A new definition of boundedness of linear order-homomorphisms (LOH)in $L$-topological vector spaces is proposed. The new definition iscompared with the previous one given by Fang [The continuity offuzzy linear order-homomorphism, J. Fuzzy Math. 5 (4) (1997)829$-$838]. In addition, the relationship between boundedness andcontinuity of LOHs is discussed. Finally, a new uniform boundednessprincipl...
متن کامل